Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Preparation and characterization of silicon nanowires catalyzed by aluminum

Identifieur interne : 000672 ( Main/Repository ); précédent : 000671; suivant : 000673

Preparation and characterization of silicon nanowires catalyzed by aluminum

Auteurs : RBID : Pascal:13-0208477

Descripteurs français

English descriptors

Abstract

Silicon nanowires (SiNWs) were grown on indium tin oxide coated glass substrates by a pulsed plasma-enhanced chemical vapor deposition (PPECVD) method using aluminum as a catalyst. The thin films of the catalyst, with thicknesses ranging from 10 nm to 100 nm, were deposited on the substrates by thermal evaporation. The effect of the thickness of the thin film catalyst on the morphology of the silicon nanowires was investigated. The surface morphology study of the prepared wires showed that the modal wire diameter increased as the catalyst film thickness increased. The X-ray diffraction patterns of the prepared silicon nanowires had no silicon peaks, indicating that the wires had low crystallinity. The photoluminescence spectra of the SiNWs showed that all samples had more than one emission band. The emission band location and shape were found to be dependent on catalyst thickness. The Raman spectra of the prepared nanowires showed that the first order transverse band shifted toward lower frequencies compared with the c-Si band location.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0208477

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Preparation and characterization of silicon nanowires catalyzed by aluminum</title>
<author>
<name sortKey="Al Taay, H F" uniqKey="Al Taay H">H. F. Al-Taay</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Engineering and Energy, Murdoch University, South St.</s1>
<s2>Murdoch, WA 6150</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Murdoch, WA 6150</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, College of Sciences for Women, University of Baghdad</s1>
<s2>Baghdad</s2>
<s3>IRQ</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Iraq</country>
<wicri:noRegion>Baghdad</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mahdi, M A" uniqKey="Mahdi M">M. A. Mahdi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Nano-Optoelectronics Research and Technology Laboratory (N.O.R), School of Physics, Universiti Sains Malaysia</s1>
<s2>11800 Penang</s2>
<s3>MYS</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>11800 Penang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parlevliet, D" uniqKey="Parlevliet D">D. Parlevliet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Engineering and Energy, Murdoch University, South St.</s1>
<s2>Murdoch, WA 6150</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Murdoch, WA 6150</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hassan, Z" uniqKey="Hassan Z">Z. Hassan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Nano-Optoelectronics Research and Technology Laboratory (N.O.R), School of Physics, Universiti Sains Malaysia</s1>
<s2>11800 Penang</s2>
<s3>MYS</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>11800 Penang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jennings, P" uniqKey="Jennings P">P. Jennings</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Engineering and Energy, Murdoch University, South St.</s1>
<s2>Murdoch, WA 6150</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Murdoch, WA 6150</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0208477</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0208477 INIST</idno>
<idno type="RBID">Pascal:13-0208477</idno>
<idno type="wicri:Area/Main/Corpus">000C28</idno>
<idno type="wicri:Area/Main/Repository">000672</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1386-9477</idno>
<title level="j" type="abbreviated">Physica ( E) low-dimens. syst. nanostrut.</title>
<title level="j" type="main">Physica. E, low-dimentional systems and nanostructures</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catalysts</term>
<term>Crystallinity</term>
<term>Evaporation</term>
<term>Layer thickness</term>
<term>Nanomaterial synthesis</term>
<term>Nanostructured materials</term>
<term>Nanowires</term>
<term>PECVD</term>
<term>Photoluminescence</term>
<term>Raman spectroscopy</term>
<term>Silicon</term>
<term>Size effect</term>
<term>Surface morphology</term>
<term>Thin films</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Silicium</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Catalyseur</term>
<term>Synthèse nanomatériau</term>
<term>Méthode PECVD</term>
<term>Couche mince</term>
<term>Evaporation</term>
<term>Effet dimensionnel</term>
<term>Morphologie surface</term>
<term>Epaisseur couche</term>
<term>Diffraction RX</term>
<term>Cristallinité</term>
<term>Photoluminescence</term>
<term>Spectrométrie Raman</term>
<term>Substrat oxyde d'indium et de zinc</term>
<term>Substrat verre</term>
<term>8107V</term>
<term>8107B</term>
<term>8116H</term>
<term>8116</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Silicon nanowires (SiNWs) were grown on indium tin oxide coated glass substrates by a pulsed plasma-enhanced chemical vapor deposition (PPECVD) method using aluminum as a catalyst. The thin films of the catalyst, with thicknesses ranging from 10 nm to 100 nm, were deposited on the substrates by thermal evaporation. The effect of the thickness of the thin film catalyst on the morphology of the silicon nanowires was investigated. The surface morphology study of the prepared wires showed that the modal wire diameter increased as the catalyst film thickness increased. The X-ray diffraction patterns of the prepared silicon nanowires had no silicon peaks, indicating that the wires had low crystallinity. The photoluminescence spectra of the SiNWs showed that all samples had more than one emission band. The emission band location and shape were found to be dependent on catalyst thickness. The Raman spectra of the prepared nanowires showed that the first order transverse band shifted toward lower frequencies compared with the c-Si band location.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1386-9477</s0>
</fA01>
<fA03 i2="1">
<s0>Physica ( E) low-dimens. syst. nanostrut.</s0>
</fA03>
<fA05>
<s2>48</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Preparation and characterization of silicon nanowires catalyzed by aluminum</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>AL-TAAY (H. F.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MAHDI (M. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PARLEVLIET (D.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HASSAN (Z.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>JENNINGS (P.)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Engineering and Energy, Murdoch University, South St.</s1>
<s2>Murdoch, WA 6150</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, College of Sciences for Women, University of Baghdad</s1>
<s2>Baghdad</s2>
<s3>IRQ</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Nano-Optoelectronics Research and Technology Laboratory (N.O.R), School of Physics, Universiti Sains Malaysia</s1>
<s2>11800 Penang</s2>
<s3>MYS</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>21-28</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145E</s2>
<s5>354000503022650040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>46 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0208477</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. E, low-dimentional systems and nanostructures</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Silicon nanowires (SiNWs) were grown on indium tin oxide coated glass substrates by a pulsed plasma-enhanced chemical vapor deposition (PPECVD) method using aluminum as a catalyst. The thin films of the catalyst, with thicknesses ranging from 10 nm to 100 nm, were deposited on the substrates by thermal evaporation. The effect of the thickness of the thin film catalyst on the morphology of the silicon nanowires was investigated. The surface morphology study of the prepared wires showed that the modal wire diameter increased as the catalyst film thickness increased. The X-ray diffraction patterns of the prepared silicon nanowires had no silicon peaks, indicating that the wires had low crystallinity. The photoluminescence spectra of the SiNWs showed that all samples had more than one emission band. The emission band location and shape were found to be dependent on catalyst thickness. The Raman spectra of the prepared nanowires showed that the first order transverse band shifted toward lower frequencies compared with the c-Si band location.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A16H</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70H67</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Catalyseur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Catalysts</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Méthode PECVD</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>PECVD</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Evaporation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Evaporation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Effet dimensionnel</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Size effect</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Morphologie surface</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Surface morphology</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>XRD</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Cristallinité</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Crystallinity</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Cristalinidad</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Spectrométrie Raman</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Raman spectroscopy</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Substrat oxyde d'indium et de zinc</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Substrat verre</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8116H</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8116</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>189</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000672 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000672 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0208477
   |texte=   Preparation and characterization of silicon nanowires catalyzed by aluminum
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024